

Department of Electrical and Electronics Engineering

30% English Program

Course Catalog

February 2020, Trabzon

CONTENTS

Contents	i
1. General Infirmatiin	1
1.1. Foundadion History	1
1.2. Student Admission	1
1.3. Distribution of Course Content by Years	1
1.4. Examination, Assessment and Grading Regulations	2
1.5. Graduation Requirements	2
1.6. Educational Outcomes	3
1.7. Program Outcomes	3
1.8. Accreditation	4
1.9. Contact Information	4
2. Course list	5
3. Course Contents	19

1. GENERAL INFORMATION

1.1. Foundation History

Department of Electrical end Electronics Engineering was established in 1969 and continues its mission since then. The students who have graduated from the Department of Electrical end Electronics Engineering is awarded with a Bachelor's degree in the field of Electrical end Electronics Engineering.

The department is constructed over a 14719 m2 area. 3832 m2 of the total are is reserved for laboratories. There are 12 classrooms, 2 seminar saloons and one meeting room. There is also a Lecture Hall, which is named after Halis Duman who is one of the founder of the department. Four of the classrooms have been assigned to the Department of Computer Engineering. Halis Duman Lecture Hall, all classrooms, Seminar room, and the meeting room are equipped with a computer and projection device for presentations. Equipments in laboratories are renewed approximately in evry five years. There are two computer labs with 25 PC's each. Required softwares for electrical and electronics engineers are installed .

1.2. Student Admission

In order to be accepted, the students must have a high school diploma, a sufficient grade from national university entrance exam done by Student Selection and Placement Center (ÖSYM), and an English Language Certificate showing the qualification to attend courses in English.

Students who do not speak enough English are admitted to the English Preparatory Program for one year at the School of Foreign Languages. They take an English qualification exam when they complete this program. If they get enough marks from this qualification exam, they can start their education in the Department of Electrical and Electronics Engineering.

1.3. Distribution of Course Content by Years

The content of the courses in the curriculum has been spread over four years as follows to enable students to access the departmental program outcomes.

- i. The first year of the program mainly consists of basic science and mathematics courses.
- ii. In the second year, the courses mainly cover the core topics of Electrical and Electronics Engineering. In the second year, social elective courses are also offered to students.
- iii. The third year courses cover topics related to the sub-fields of Electrical and Electronics Engineering as well as core topics. In the third year, some technical elective courses are offered to students.
- iv. In the fourth year, students have to do an Engineering Design Project and a Graduation Project. All other courses in the fourth year are Technical Elective. Students can specialize in one of the subfields of Electrical and Electronics Engineering with the technical elective courses they take. There is also one social elective course in the fourth year.

1.4. Examination, Assessment and Grading Regulations

The examination, assessment and grading regulations have been set up for the university by the University Senate and the Department of Electrical end Electronics Engineering is bound by these regulations.

Each course is assessed by a in term work (50%) and a final end-of-term exam (50%). The in term work consists of at least a midterm exam, assignments, term project, quizzes and/or labs.

The catalog values of grading system is given in Table 1. The passing grade of a student depends on the class average of the course. This is called the relative grading system. If the number of students taking the exam is 30 and above, the relative grade system based on the grade point average of the class is applied. If the number of students taking the exam is between 10 and 29, the relative grading system is applied according to the percentiles of success. If the number of students taking the exam is less than 10, the catalog grading system is applied. The catalog grading system is applied too when the class average is 60 and above.

Score range	out of 100.	Letter equivalence	Grading out of 4
90	100	AA	4.0
80	89	BA	3.5
75	79	BB	3.0
70	74	CB	2.5
60	69	CC	2.0
50	59	DC	1.5
40	49	DD	1.0
30	39	FD	0.5
0	29	FF	0.0

According to the regulations;

- The pass grade is CC.
- If the average grade of term is 2.0 and above, DC grades are considered as passing grades.
- DD and smaller grades are considered unsuccessful.
- In order to be enrolled in the 5th semester courses, the grade point average at the end of the 4th semester must be 1.8 or above.

1.5. Graduation Requirements

To be able to have the bachelor's degree in the field of Electrical end Electronics Engineering, the students are required

- a. to have passed all courses in the curiculum with a grade of at least DC form the,
- b. to have achieved a cumulative gross point average of at least 2.00 out of 4.00,
- c. to completed the compulsory internship period of 60 days at least at two different places and had a passing grade for the reports prepared for these works,
- d. to prepare, submit and successfully defend a graduation project.

1.6. Educational Outcomes

The graduates of the KTU Electrical and Electronics Engineering Department work open to new developments in a continuous education awareness and produce solutions at the national and international level for the requirements in the fields of communication systems, electronic hardware and software, industrial automation, energy production, transmission and distribution.

They design projects taking into account the standards in these issues and manage them within the framework of ethical rules. They put these projects into practice, taking into account their social, economic, political, legal and environmental consequences.

1.7. Program Outcomes

The program outputs are as follows.

- i. Adequate knowledge in mathematics, science and related engineering discipline; ability to use theoretical and applied knowledge in these areas in complex engineering problems
- ii. Ability to identify, define, formulate, and solve complex engineering problems; ability to select and apply appropriate analysis and modeling methods for this purpose
- iii. Ability to design a complex system, process, device or product to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose
- iv. Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering applications; ability to use information technologies effectively
- v. Ability to design and conduct experiments, collect data, analyze and interpret results for studying complex engineering problems or discipline-specific research topics.
- vi. Ability to work effectively in disciplinary and multidisciplinary teams; ability to work individually
- vii. Ability to communicate effectively in Turkish, both orally and in writing; at least one foreign language knowledge; ability to write effective reports and understand written reports, to prepare design and production reports, to be able to present effectively, to give and receive clear and understandable instructions
- viii. Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology, and to constantly renew itself
 - ix. Acting in accordance with ethical principles, awareness of professional and ethical responsibility; information about the standards used in engineering applications
 - x. Information about business life practices such as project management, risk management and change management; awareness of entrepreneurship, innovation; information on sustainable development
 - xi. Information about the effects of engineering applications on universal and social health, environment and safety and information about the problems reflected in the engineering field of the era; awareness of the legal consequences of engineering solutions

xii. Mathematical knowledge, basic sciences, computer and engineering sciences, including probability and statistical information, derivative, integral, linear algebra, complex variables and discrete mathematical calculations required for the design and analysis of complex electrical and electronic devices, software and hardware and software systems. Information on the topics.

The first 11 of the program outcomes defined are those that overlap with MÜDEK outcomes. Outcome number 12 is a specific output for the department.

1.8. Accreditation

Department of Electrical and Electronics Engineering at Faculty of Engineering of Karadeniz Technical University has been accredited by MUDEK since 2010.

MUDEK is an organization that accredits engineering programs in Turkey. MUDEK is a member of Washington Accord and International Engineering Alliance. MUDEK is recognized by European Acreditation of Engineering Programs (EURO-ACE).

1.9. Contact Information

Address: Karadeniz Technical University, Engineering faculty, Department of Electrical and Electronics Engineering 61080 Ortahisar, Trabzon, Turkey

Phone: +90 462 3253154, +90 462 3772906 Fax: +90 462 325 7405 E-Mail: <u>ihaltas@ktu.edu.tr</u> Web Adress: <u>http://www.ktu.edu.tr/eee</u>

2. COURSE LIST

The education period is four years in all departments of KTÜ Engineering Faculty. There are two semesters in one year, one being autumn and the other being spring. The curriculum applied in the 30% English program of the Department of Electrical and Electronical Engineering is given below for each semester. The meanings of the abbreviations used in the given course list are as follows.

- ECTS : European Credit Transfer System
 - C : Credid hour
 - H : Course hour
 - A : Application
 - L : Lab
 - E : Elective
 - P : Prerequisite

	FIRST Y	EAR									
	FALL SEMESTER										
Code	Course Name	ECTS	С	Н	А	L	Е	Р			
MAT1011	Mathematics - I	5	4,0	4	0	0	0				
YDI1001	English - I	3	3,0	3	0	0	0				
AITB1001	Atatürk's Principles And Revolution History - I	2	2,0	2	0	0	0				
TDB1001	Turkish Language - I	2	2,0	2	0	0	0				
PHYS1001	Physics - I	5	3,5	3	0	1	0				
KIM1010	Basic Chemistry	5	3,5	3	0	1	0				
ELK1005	Introduction to Computer	6	2,5	2	0	1	0				
ELK1003	Introduction to Electrical and Electronics Engineering	2	2,0	2	0	0	0				
	Total Credits	30	22,5	21	0	3	0				
	English	8	6,5	6	0,0	1	0,0				

	FIRST Y	EAR									
	SPRING SEMESTER										
Code	Course Name	ECTS	С	Н	А	L	Е	Р			
YDI1002	English - II	3	3,0	3	0	0	0				
ELK1000	Computer Programming	6	3,5	3	0	1	0				
MAT1008	Mathematics - II	5	4,0	4	0	0	0				
AITB1000	Atatürk's Principles And Revolution History - II	2	2,0	2	0	0	0				
TDB1000	Turkish Language - II	2	2,0	2	0	0	0				
PHYS1000	Physics - II	5	3,5	3	0	1	0				
ELK1002	Fundamentals of Electrical Engineering	7	4,0	3	0	2	0				
	Total Credits	30	22,0	20	0	4	0				
	English			6	0	1	0				

	SECOND YEAR										
FALL SEMESTER											
Code	Course Name	ECTS	С	Н	А	L	Е	Р			
EEE2005	English in Engineering I	2	2,0	2	0	0	0				
MAT2011	Differential equations	5	4,0	4	0	0	0				
ELK2005	Circuits - I	5	3,0	3	0	0	0	ELK1002			
EEE2001	Measurements in Electrical Engnineering	5	3,0	2	0	2	0	ELK1002			
ELK2019	Probability Theory	5	3,0	3	0	0	0				
EEE2003	Materials in Electrical Engineering	4	2,0	2	0	0	0				
	Social Elective - S31	4	2,0	2	0	0	4				
	Total Credits			18	0	2	4				
	English	11	7	6	0	2	0				

	SOCIAL ELECTIVE GROUP S31 COURSES								
Code	Course Name	ECTS	С	Н	А	L	Е	Р	
IKT2045	Engineering Economy	4	2,0	2	0	0			
ELK2011	Entrepreneurship	4	2,0	2	0	0			

	SECOND YEAR										
SPRING SEMESTER											
Code	Course Name	ECTS	С	Н	А	L	Е	Р			
EEE2002	English in Engineering II	2	2,0	2	0	0	0				
ELK2004	Electromagnetic Fields	5	3,0	3	0	0	0				
EEE2000	Engineering Mathematics	5	3,0	3	0	0	0				
ELK2008	Circuits - II	5	4,0	3	0	2	0	ELK2005			
ELK2012	Electronics I	5	4,0	3	0	2	0	ELK1002			
ELK2016	Digital Design	5	3,5	3	0	1	0				
	Social Elective - S41	3	2,0	2	0	0	3				
	Total Credits 30 21,5 19 0 5 3										
	English	7	5	5	0	0	0				

	SOCIAL ELECTIVE GROUP S41 COURSES							
Code	Course Name	ECTS	С	Н	А	L	Е	Р
ELK2006	Engineering Ethics	3	2,0	2	0	0		
ELK2000	Work safety	3	2,0	2	0	0		

	THI	RD YEAF	۲.						
FALL SEMESTER									
Code	Course Name	ECTS	С	Н	А	L	Е	Р	
ELK3009	Electronics - II	6	4,0	3	0	2	0	ELK2012	
EEE3003	System Dynamics and Control	5	3,0	3	0	0	0		
ELK3001	Electromagnetic Waves	5	3,0	3	0	0	0		
ELK3015	Signals and Systems	5	3,0	3	0	0	0		
EEE3001	Power Systems	5	3,0	3	0	0	0		
	Technical Elective - T51	4	3,0	3	0	0	4		
	Total Credits	30	19,0	18	0	2	4		
	English	10	6,0	6	0	0	0		

	TEKNİK SEÇMELİ GRUP T51 DERSLERİ									
Code	Course Name	ECTS	С	Н	Α	L	Е	Р		
ELK3003	Computer Communication	4	3,0	3	0	0				
ELK3011	Circuit Synthesis	4	3,0	3	0	0				
EEE3007	Numerical Analysis	4	3,0	3	0	0				

	THIRD	YEAR								
SPRING SEMESTER										
Code	Course Name	ECTS	С	Н	А	L	Е	Р		
ELK3020	Entrepreneurship and Project Management	4	2,0	2	0	0	0			
ELK3000	Electric Machinery - I	6	4,0	3	0	2	0			
EEE3006	Microprocessors	5	3,5	3	0	1	0			
ELK3010	Communication Technique	5	3,0	2	0	2	0			
	Technical Elective - T61	5	4,0	3	0	2	5			
	Technical Elective - T62	5	4,0	3	0	2	5			
	Total Credits			16	0	9	10			
	English	14	9,5	8	0	3	5			

	TECHNICAL ELECTIVE GROUP T61 COURSES										
Code	Course Name	ECTS	С	Н	А	L	Е	Р			
EEE3002	Power Electronic Circuits	5	4,0	3	0	2					
EEE3010	Automatic Control Systems	5	4,0	3	0	2					
EEE3008	Digital Signal Processing	5	4,0	3	0	2					
	TECHNICAL ELECTIV	E GROU	Р Т62 СО	URSES							
Code	Course Name	ECTS	С	Н	А	L	Е	Р			
ELK3002	Power Distribution Systems	4	4,0	3	0	2					
ELK3018	Programmable Logic Controllers	4	4,0	3	0	2					
ELK3012	Microwave Techniques	4	4,0	3	0	2					

	FOU	RTH YE	EAR								
	FALL SEMESTER										
Code	Course Name	ECTS	С	Н	А	L	Е	Р			
ELK4031	Professional Experience I	3	0,0	0	0	0	0				
ELK4001	Engineering Design	5	3,0	2	2	0	0				
EEE4013	High Voltage Techniques	4	3,0	3	0	0	0				
	Technical Elective - T71	5	3,0	2	0	2	5				
	Technical Elective - T72	5	3,0	2	0	2	5				
	Technical Elective - T73	4	2,0	2	0	0	4				
	Technical Elective - T74	4	2,0	2	0	0	4				
	Total Credits	30	16,0	13	2	4	18				
	English	10	6	4	0	4	10				

	TECHNICAL ELEC	TIVE GR	OUP T71	COUR	SES					
Code	Course Name	ECTS	С	Н	А	L	Е	Р		
EEE4005	Renewable Energy Systems	5	3	2	0	2				
EEE4009	Electrical Machines - II	5	3	2	0	2				
EEE4007	Medical Electronics	5	3	2	0	2				
TECHNICAL ELECTIVE GROUP T72 COURSES										
Code	Course Name	ECTS	С	Н	А	L	Е	Р		
EEE4003	Power Electronic Applications	5	3	2	0	2				
EEE4015	Process Control	5	3	2	0	2				
EEE4001	Industrial Electronics	5	3	2	0	2				
	TECHNICAL ELEC	TIVE GR	OUP T73	COUR	SES					
Code	Course Name	ECTS	С	Η	А	L	Е	Р		
ELK4025	Protection in Power Systems	5	3	2	0	2				
ELK4005	Antennas And Propagation	5	3	2	0	2				
ELK4017	Digital Communication	5	3	2	0	2				
	TECHNICAL ELEC	TIVE GR	OUP T74	COUR	SES					
Code	Course Name	ECTS	С	Н	А	L	Е	Р		
ELK4007	Lighting Technique	4	2	2	0	0				
ELK4033	Special Electric Machines	4	2	2	0	0				
ELK4023	Communication Electronics	4	2	2	0	0				
ELK4009	Image processing	4	2	2	0	0				

	FOU	RTH YE	AR								
	SPRING SEMESTER										
Code	Course Name	ECTS	С	Н	А	L	Е	Р			
ELK4026	Professional Experience II	3	0,0	0	0	0	0				
ELK4000	Graduation project	6	3,0	2	2	0	0	ELK4001			
	Technical Elective - T81	6	3,0	2	0	2	6				
	Technical Elective - T82	6	2,0	2	0	0	6				
	Technical Elective - T83	6	2,0	2	0	0	6				
	Social Elective - S81	3	2,0	2	0	0	3				
	Total Credits	30	12,0	10	2	2	21				
	English 6 3 2 0 2 6										

	TECHNICAL ELECT	FIVE GR	OUP T81	COUR	SES				
Code	Course Name	ECTS	С	Н	А	L	Е	Р	
EEE4008	Power System Analysis	6	3	2	0	2			
EEE4001	Drive Systems	6	3	2	0	2			
EEE4002	Medical Imaging Techniques	6	3	2	0	2			
EEE4006	Electronic Device Techniques	6	3	2	0	2			
TECHNICAL ELECTIVE GROUP T82 COURSES									
Code	Course Name	ECTS	С	Η	А	L	Е	Р	
ELK4024	Design of Power Systems	6	2	2	0	0			
ELK4022	Electromagnetic compatibility	6	2	2	0	0			
ELK4020	Fiberoptic communication	6	2	2	0	0			
ELK4014	Communication Systems	6	2	2	0	0			
ELK4002	Electric Vehicles	6	2	2	0	0			

	TECHNICAL ELECT	FIVE GR	OUP T83	COUR	SES			
Code	Course Name	ECTS	С	Η	А	L	Е	Р
ELK4030	Digital Control Systems	6	2	2	0	0		
ELK4028	Mobile Communication	6	2	2	0	0		
ELK4012	Microwave Systems	6	2	2	0	0		
ELK4004	Intelligent Control Systems	6	2	2	0	0		
	SOCIAL ELECTIV	VE GRO	UP S81 CO	OURSE	S			
Code	Course Name	ECTS	С	Η	А	L	Е	Р
HUK4028	Business law	3	2,0	2	0	0		
ISL4012	Management and organization	3	2,0	2	0	0		

	ECTS	С	Н	Α	L	Е	Р
TOTAL	240	152,5	135	4	31	60	
% TOTAL	100	100,0	100	2,963	23	25	
English	74	49,5					
% English	30,83	32,46					

3. COURSE CONTENTS

FIRST YEAR FALL SEMESTER

Code	Course Name	ECTS	С	Η	Α	L	Ε	Р
MAT1011	Mathematics - I	5	4,0	4	0	0	0	
Functions, Inverse functions, Plotting the graphs of basic curves, Transformation of graphs, Trigonometric								
functions, In	verse trigonometric functions, Logarithmic and	l exponei	ntial fu	inctic	ns. L	.imit,	Rule	s of limit,
Continuity.	Continuity. Derivative of function and its application (Derivative of trigonometric functions, Inverse							
trigonometri	c functions, Logarithmic and exponential funct	tions, L'l	nospita	l rule	e, Lii	nit a	t infii	nity, Rolle
theorem and	Mean value theorem, Optimization problems, sk	etching t	he gra	ph of	func	tion).	Integ	ration and
techniques, I	techniques, Indefinite integrals (Anti-derivatives) Methods of integration (change of variables, integration by							
parts), Partial fractions, Integrals of trigonometric (rational) functions. Elimination of incomplete parts,								
general asses	ssment.							

Code	Course Name	ECTS	С	Η	Α	L	Е	Р
YDI1001	English - I	3	3,0	3	0	0	0	
Reading passages and exercises. Listening passages and drills, Translation studies, Writing regarding a								

Reading passages and exercises, Listening passages and drills, Translation studies, Writing regarding a specific subject, Holding discussion on a given topic.

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
AITB1001	Atatürk's Principles And Revolution History - I	2	2,0	2	0	0	0	

Historical concepts, descriptions, descriptions of resources and methods, French Revolution and Industrial Revolution, Collapse of the Ottoman Empire, Tanzimat and Islahat Firman (order), I. and II. Constitutional Monarchy, Tripoli and Balkan Wars, I. World War, Mondros Truce, Wilson principles, Paris Conference, Atatürk, Samsun and Anatolia, Amasya Notice, National Congress, Opening the Mebusan Assembly, Foundation of Turkish National Assembly (TBMM) , Internal rebellions, 1921 Organic Law, Foundation of the Army, I. Inönü, Sakarya, Kütahya, Eskişehir Wars and the Last Attack, Pacts during the Turkish War of Independence, Lozan Pact, Abrogate of Saltanate. Concepts, descriptions, descriptions of resources and methods in the History of Revolutions, French Revolution and Industrial Revolution, Collapse of Ottoman Empire, Tanzimat and Islahat Firman (order), I. and II. constitutional Monarchy, Tripoli and Balkan Wars, I. World War, the Armistice of Moudros Truce, Wilson Principles, Paris Conference, Atatürk, Samsun and Anatolia, Amasya Notice, National Congress, Opening of the Mebusan Assembly, Foundation of Turkish National Assembly (TBMM) , Internal Rebellions, 1921 Organic Law, Foundation of Turkish National Assembly, I. and II. constitutional Monarchy, Tripoli and Balkan Wars, I. World War, the Armistice of Moudros Truce, Wilson Principles, Paris Conference, Atatürk, Samsun and Anatolia, Amasya Notice, National Congress, Opening of the Mebusan Assembly, Foundation of Turkish National Assembly (TBMM) , Internal Rebellions, 1921 Organic Law, Foundation of the Army, I. Inönü, Sakarya, Kütahya, Eskişehir Wars and the Last Attack, Pacts during the Turkish War of Independence, Lozan Pact, Abolishment of Sultanate.

Code	Course Name	ECTS	С	Н	А	L	Е	Р
TDB1001	Turkish Language - I	2	2,0	2	0	0	0	

Language and languages; (Language-Nation Relations, Language-Culture) Languages in the world and the place of Turkish language among other languages; (Language families in terms of their sources) Historical Development of Turkish written language: (Old Turkish- Middle Turkish-Divanü Lügati't-Türk, Atabet'ül Hakayık, Harezm Turkish). Old Turkey Turkish (Old Anatolian Turkish) ; The era new Turkish, Modern Turkish era, West (West eastern Turkish) Turkey's Turkish, East (North-eastern Turkish) Karatay Turkish Phonetics; (Sound and the formation of sound the harmony of vowel sounds), Fundamental sound Features in Turkish; (Features sound of Turkish, Spelling structure of Turkish, Sentence Emphasis) . Morphology; (Words in terms of form, prefixes, suffixes, roots). Enumeration and words in respect to their functions; (Noun, pronouns, and adjectives) Verbs; (Shape and Tense supplements). Prepositions-Gerunds; (Derived from nouns-verbs). Meaning Science: Meaning in word, The frame of word meaning. Sentence Knowledge: (Kinds of Sentences). The analysis of sentences.

Code	Course Name	ECTS	С	Н	А	L	Е	Р
PHYS1001	Physics - I	5	3,5	3	0	1	0	
Vectors Motion in One Dimension Motion in Two Dimensions. The Laws of Motion, Circular Motion and								

Vectors, Motion in One Dimension, Motion in Two Dimensions, The Laws of Motion, Circular Motion and Other Applications of Newton's Laws, Work and Kinetic Energy, Potential Energy and Conservation of Energy, Linear Momentum and Collisions, Rotation of a Rigid Object About a Fixed Axis, Rolling Motion and Angular Momentum, Static Equilibrium and Elasticity, Oscillatory Motion, Universal Gravitation.

Code	Course Name	ECTS	С	Η	Α	L	Е	Р
KIM1010	Basic Chemistry	5	3,5	3	0	1	0	
Matter, Molecules and Ions, Chemical Formula and Equations, Electronic Configurations of Atoms,								
Chemical Bo	Chemical Bonds, Periodic Table and Elements, Gases, Liquids, Solids, Solutions and Solubility, Acids and							
Bases, Ionic Equilibrium, Reaction in Solutions, Oxidation and Reduction.								

Code	Course Name	ECTS	С	Н	Α	L	E	Р
ELK1005	Introduction to Computers	6	2,5	2	0	1	0	
Introduction	to Combinational Logic: An Introduction An	alog and	Digit	al Sy	vstems	s. Nu	ımber	Systems.

Introduction to Combinational Logic: An Introduction Analog and Digital Systems, Number Systems, Number conversions, Logic Gates, Boolean Algebra and Logic functions, Boolean equations, Products of sums (POS), Sum of products (SOP), Simplification of logic functions (Karnaugh Maps), Combinational logic, Digital circuit design, De Morgan theorem, DON'T CARES, Priority circuits, Rules of circuit schematics, Multiple output circuits, Tristate buses.

Code	Course Name	ECTS	С	Н	Α	L	Е	Р	
ELK1003	Introduction to Electrical and Electronics Engineering	2	2,0	2	0	0	0		
General info	ormation about the department, faculty members	and their	resear	ch ar	eas. J	lop ot	portu	nities and	
the companie	the companies offering jobs to Electrical and Electronics Engineers. Information about some regulations and								
by laws related	by laws related to education and practicing as an electrical and electronics engineer.								

FIRST YEAR SPRING SEMESTER

Code	Course Name	ECTS	С	Н	Α	L	Е	Р	
YDI1002	English - II	3	3,0	3	0	0	0		
Reading tex	ts related to the department; grammar activities; related	ated voca	bulary	and t	ransl	ation b	etween	n two	
languages: li	languages: listening activities: discussions over the related current topics in the field.								

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
ELK1000	Computer Programming	6	3,5	3	0	1	0	
An Overvie	ew of C: The origin of C, the form of a C prog	gram: Va	riables	, Coi	nstant	s, Op	erators	, and
Expressions:	identification of names, data types, declaration of	variables	, assig	nmen	t stat	ement	s, cons	tants,
operators, bi	twise operators. Program Control Statements: true?	and fals	e? in (С, С	state	ments,	condi	tional
statements,	if (), switch (), loops while (), do/while (), breal	k, exit ()	, cont	inue.	Func	ctions:	The 1	return
statements, s	scope rules of functions, function arguments, function	n prototy	pes, re	cursio	on, po	ointer t	o func	tions.
Arrays: sing	le-dimensional arrays, passing single-dimension a	rrays to a	functio	ns, t	wo-di	mensi	onal a	rrays,
	ional arrays, arrays and pointers. Pointers: Pointers		· ·				•	
operators, po	pinter expressions, pointers and arrays, initializing p	pointers, p	pointer	to fi	inctic	ns. In	put, O	utput,
and Disk File	es: streams and files, console I/O, formatted console I	/O. Struc	ture.					

Code	Course Name	ECTS	С	Η	Α	L	Е	Р
MAT1008	Mathematics - II	5	4,0	4	0	0	0	
Matrix, Det	erminants, Eigenvalues and eigenvectors, Inverse	matrix.	Syster	ns of	f line	ear eq	uations	and
solutions by	reduction to echelon form and Crammer rule. Co	onic section	ons an	d qua	adrati	c equa	tions,	Polar
coordinates a	and plotting graphs, Parameterization of curves on p	lane. Thr	ee-dim	ensio	nal sp	bace ar	nd Cart	esian
coordinates.	Vectors on the plane and space. Dot, cross and scal	lar triple	produc	t. Lin	es an	d plan	es on t	hree-
dimensional	space. Cylinders, conics, spheres and their coordinate	es. Vector	value	d fund	ctions	and c	urves o	on the
space, curva	ture, torsion and TNB frame. Multi variable functi	ons, limi	t, conti	inuity	and	partia	l deriv	ative.
Chain rule, o	directional derivative, gradient, divergence, rotational	al and tar	ngent p	lanes	. Ext	remum	value	s and
saddle point	s, Lagrange multipliers, Taylor and Maclaurin ser	ies. Dout	ole inte	grati	on, a	reas, r	nomen	t and
gravitational	centre. Double integral in polar coordinates. Trip	ole integra	als in	cartes	sian c	coordin	ates. 1	Mass,
moment and	gravitational centre in three-dimensional space. 7	Friple int	egrals	in cy	lindr	ical ar	nd sph	erical
coordinates.	Change of variable in multiple integrals. Line integra	als, vector	fields,	work	c, flux	. Gree	n's the	orem
on plane. Are	eas of surface and surface integrals. Stokes theorem,	divergenc	e theor	em a	nd ap	plicati	ons	

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
AITB1000	Atatürk's Principles And Revolution History - II	2	2,0	2	0	0	0	
Concepts, c	lescriptions, descriptions of resources and metho	ods in th	e Hist	ory	of Re	evoluti	ons, F	rench

Revolution and Industrial Revolution, Collapse of Ottoman Empire, Tanzimat and Islahat Firman (order), I. and II. constitutional Monarchy, Tripoli and Balkan Wars, I. World War, the Armistice of Moudros Truce, Wilson Principles, Paris Conference, Atatürk, Samsun and Anatolia, Amasya Notice, National Congress, Opening of the Mebusan Assembly, Foundation of Turkish National Assembly (TBMM), Internal Rebellions, 1921 Organic Law, Foundation of the Army, I. Inönü, Sakarya, Kütahya, Eskişehir Wars and the Last Attack, Pacts during the Turkish War of Independence, Lozan Pact, Abolishment of Sultanate.

Code	Course Name	ECTS	С	Н	Α	L	E	Р
TDB1000	Turkish Language - II	2	2,0	2	0	0	0	

Punctuation and Composition (Punctuation Marks, Other Marks) marks of abbreviations, Spelling Rules (The spelling of capital letters, The writing of quotations. numbers, The Composition the purpose of composition, method in composition writing, planning, introduction, development and result in composition, the features of telling (purity in telling, simplicity in telling, clarity and sincerity in telling mistakes in telling (the use of synonymous words in the sentence). The use of synonymous words in the sentence, misuse of phrases, Explanation, story, description, criticism, portray, speaking, proving. The kinds of verbal telling (daily and unprepared speaking- prepared speaking, debate, panel) The kinds of written telling (letter, telegraph, celebration, invitation, literary letter Job letters, formal letter, petition, report, decision, announcement, advertisement). Talking, criticism, memoir, travel, writing, interview, survey Autobiography biography novel- story, fable- theatre tragedy, drama- scenario, poetry and its kinds.

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
PHYS1000	Physics - II	5	3,5	3	0	1	0	
Electric fiel	ds, Gauss' law, Electric potential, Capacitance	and diele	ectrics,	Curi	ent a	nd res	istance	e, Direct

current circuits, Magnetic fields, Sources of the magnetic field, Faraday's law, Inductance, Alternating current circuits, Electromagnetic waves, The nature of light and the laws of geometric optics, Geometric optics, Interference of light waves.

Code	Course Name	ECTS	С	Н	Α	L	E	Р
ELK1002	Fundamentals of Electrical Engineering	7	4,0	3	0	2	0	

Circuit Concepts: Voltage-current relations, Circuit diagrams, Circuit Laws: Kirchoff's voltage law, Kirchoff's current Law, Energy and Electrical Power, Active circuits, passive circuits and ideal circuits. Analysis methods: The branch current method, The mesh current method, The node method, State variable analysis. Energy storage elements: The capacitors and inductors, Thevenin and Norton networks. Analysis methods in AC circuits: Average and effective values, Phasors, Impedance and Admittance, Phasor diagrams and resonance, Power in the time domain, Power in sinusoidal steady state. Average or real power, Reactive power, Complex power, Maximum power transfer, Three phase circuits.

SECOND YEAR FALL SEMESTER

Code	Course Name	ECTS	С	Н	Α	L	Ε	Р
EEE2005	English in Engineering I	2	2,0	2	0	0	0	
Technical co	ommunication and its importance, Writing, Vis	ual forms	s, Doci	umen	t and	page of	design,	Technical
description, Product and process description, Technical presentation.								

Code	Course Name	ECTS	С	Η	Α	L	Е	Р
MAT2011	Differential equations	5	4,0	4	0	0	0	

Differential equations and basic concepts. Differential equations as mathematical model (Ordinary differential equations, order and degree of differential equations. Derivation of differential equations.) General, particular and singular solutions of the differential equations. Separable, homogenous, exact differential equations and transforming to exact differential equation by using integrating factor. Linear differential equations, Bernoulli differential equations. General solution of nth order linear differential equations. Change of variables. Reducible differential equations. General solution of nth order linear differential equations. General solution of nth order constant coefficient homogenous differential equations. Solutions of the constant coefficient non-homogenous equations, electrical circuits. Variable coefficient homogenous and non-homogenous differential equation). Reduction of order. Power series solutions of differential equations around ordinary points. Laplace and inverse Laplace transformations. Solutions of constant and variable coefficient boundary value problems and differential equations. Solutions of constant and transformation functions by using Laplace transformations.

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
ELK2005	Circuits - I	5	3,0	3	0	0	0	ELK1002
Classificatio	n of the circuits. Circuit analysis in t-domain	: The br	anch c	urren	t met	hod. 7	The me	esh current
method. The	method. The node method. Amplifiers and Operational amplifier circuits: Amplifier model. Feedback in							
Amplifier circuits. Operational amplifier. Analysis of circuits containing ideal op-amps. İnverting circuit.								
Summing ci	ircuit. Noninverting circuit. Integrator and	different	iator c	circuit	ts. S	tate v	ariable	analysis:
İntroduction	to state variables. Circuit state equations for	linear a	nd tim	e inv	arian	t syste	ms. C	ircuit state
equations for	nonlinear, linear and time variant systems. The	ne Solutio	ons of a	State	Equa	tions i	n s do	main and t
domain. Natural response. Forced response. Complete response. The state-transition matrix. Transfer-function								
matrix. Analysis of the stability.								

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
EEE2001	Measurements in Electrical Engnineering	5	3,0	2	0	2	0	ELK1002
Basic princi	Basic principles of measurement. Errors. Active quantities and their measurable values. Moving coil meters.							oil meters.
Current, vol	tage and resistance measurement. Power and	d energy	measu	ureme	ent. N	Aeasur	ement	of circuit
parameters.	Measurement of Power coefficient and frequend	cy. Expan	nding o	of mea	asurin	ig rang	e of in	struments.
Cathode Ray Oscilloscopes. Bridges and their applications. Digital measurement techniques. Measurement of								
magnetic quantities. A. C. bridges. Digital measuring techniques.								

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
ELK2019	Probability Theory	5	3,0	3	0	0	0	
Axiomatic a	approaches of Probability, Axioms of Probab	ility, Set	Theo	ry, C	ondit	ional	Probab	vilities and
Statistical In	Statistical Independence, Single Random Variables and Probability Distributions, Averages and Standard							d Standard
deviation, V	ariance, Common random Variables: Binomial	, Gauss,	Unifor	m, Ra	ayleig	h, Ric	ian, E	xponential,
Gamma dist	Gamma distributions and their models, Characteristics Function, Transforms techniques on Probability						Probability	
functions, Probability Distributions for more than one random Variables, Introduction to random Process,								
Correlation functions and their applications.								

Code	Course Name	ECTS	С	Н	Α	L	Ε	Р
EEE2003	Materials in Electrical Engineering	4	2,0	2	0	0	0	
Atomic structure, type of materials, crystal structures, defects in crystal structures, type of atomic, molecular bonding, holes, behaviour of electron-hole pairs, energy band theory, conductors, mobility, conductivity, conducting materials, metals and its properties, semiconductor materials and properties, intrinsic semiconducting, extrinsic semiconducting, n- and p-type semiconductors, effect of temperature on conductivity conductivity dependence on materials doping diffusion semiconductor applications and								
conductivity, conductivity dependence on materials, doping, diffusion, semiconductor applications and working principle of fundamental semiconductor based electronic devices, insulators, dielectric materials and properties, dipoles, polarization and dielectric strength, magnetic materials, magnetic dipoles, magnetic moment, magnetic field, magnetic flux, hard and soft magnetic materials, diamagnetism, para magnetism, ferro magnetism, and super-para magnetism, hysteresis in magnetic materials.								

Code	Course Name	ECTS	С	Η	Α	L	E	Р
IKT2045	Engineering Economy	4	2,0	2	0	0		

Subject of the Engineering Economy, Resolution Process on Economy, Applications of Economy in Engineering (Planning, Development), Alternative Cost Analysis, Competition Analysis of World Economy (OECD, NATO, AB, EFTA, LAFTA etc.) and AB with Turkey, Market Conditions and Demand Forecasting, Interest Event and Flow Series, Measurement of General Level of Prices (Inflation, Deflation), Ant inflationary and Ant deflationary Policies and Effects on Investments Projects, Effects of Inflation or Deflation on Investments Projects, Financial and Market Analysis, Productivity and Economic Growth Analysis, Elements that Affect the Investment Projects, Production Costs and Profit-Loss Analysis.

Code	Course Name	ECTS	С	Η	А	L	E	Р
ELK2011	Entrepreneurship	4	2,0	2	0	0		
Definition of entrepreneurship, The competencies of the entrepreneur, Legal structures of companies,								

Business ideas, Business plans, Demand forecasting, Facility planning, Marketing, Funding and its managing.

SECOND YEAR SPRING SEMESTER

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
EEE2002	English in Engineering II	2	2,0	2	0	0	0	
Writing reports, Feasibility reports, Resumes, Cover letters, Business letters, Memos, Proposals, Meetings,								
Collaboration and teamwork. Career concerns.								

Code	Course Name	ECTS	С	Н	Α	L	Ε	Р
ELK2004	Electromagnetic Fields	5	3,0	3	0	0	0	
Introduction, electromagnetic model. Static electric fields, Coulomb's law, Gauss's law and applications,								
electric potential, material media in static electric field, boundary conditions for electrostatic fields,								
capacitances	and capacitors, electrostatic energy an	nd forces.	. Steady	electric	curren	its, cui	rent d	ensity and
Ohm's law, p	power dissipation and Joule's law, resista	ance calcu	ulations. S	Static m	agnetic	c fields	, Biot-	Savart law
and applications, behaviour of magnetic materials, inductances and inductors, magnetic energy, magnetic								
forces.								

Code	Course Name	ECTS	С	Н	А	L	Е	Р
EEE2000	Engineering Mathematics	5	3,0	3	0	0	0	
Fourier series and transform, Laplace transforms and applications to electrical engineering. Other transform								

methods. Complex functions theory. Cauchy theory. Conformal mappings. Vector analysis.

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
ELK2008	Circuits - II	5	4,0	3	0	2	0	ELK2005
Analysis of stability. Circuit analysis in s-domain. Two-port networks: Z-parameters. T-equivalent of								
reciprocal network. Y-parameters. PI-equivalent of reciprocal networks. Conversion between Z and Y								
parameters. h-parameters. g-parameters. Transmission parameters. Initial value, steady and transient response								

of RLC circuits.

Code	Course Name	ECTS	С	Н	Α	L	Е	Р	
ELK2012	Electronics I	5	4,0	3	0	2	0	ELK1002	
Semiconduc	Semiconductor: p-type semiconductor, n-type semiconductor, the p-n junction. Diodes : The open-circuit p-n								
junction, the	e Volt-Ampere characteristic, the temp	erature d	lependenc	e of the	ne V/	I chara	acterist	tic, diode	
resistance, di	iode capacitance, breakdown diodes, the	e load-lin	e concept	, linear	diode	model.	, diode	switching	
,	kdown-diode voltage regulator, clipping	· · · ·					•	· · ·	
small-signal	analysis. BJT: The junction transistor,	transisto	or constru	ction,	the Co	mmon-	Base	(CB), the	
Common-En	nitter (CE), the Common-Collector (CC)	configur	ations, on	, cut-of	f, satur	ation r	regions	, transistor	
ratings, tran	nsistor switching times, the operating p	point of a	a BJT, bi	as stab	ility, se	elf-bias	or er	nitter bias,	
stabilization	against variations in ICO, VBE, and	b. JFET:	The june	ction fi	eld-effe	ect trai	nsistor,	, the Volt-	
Ampere characteristic, the enhancement MOSFET, the depletion MOSFET, MOSFET inverter, OSFET logic									
gates, comple	ementary MOSFET, the operating point of	of a JFET	•						

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
ELK2016	Digital Design	5	3,5	3	0	1	0	
Multiplexers	Multiplexers and decoders. Types of delay. Critical paths. Glitch. Introduction to sequential circuits. Bi-stable							
circuit, SR, I	circuit, SR, D latch and D flip-flop. Enabled flip-flop, Resettable flip-flop, Settable flip-flop. Sequential logic,							
Synchronous	sequential logic design. Finite state mac	chines (FS	SM), Moo	re and	Mealy l	FSM. 1	Гiming	, input and
output const	raints. Setup and hold timing constra	ints. Tin	ning anal	ysis. C	lock sl	kew. I	Design	of adder,
subtractor, comparator and ALU. Shifter, multiplier, divider. Fixed point and signed fixed point numbers.								
Floating point numbers. Counters, shift, registers, arrays of memory, ROM, RAM, DRAM, SRAM. Designing								

circuits using memory.

Code	Course Name	ECTS	С	Η	Α	L	Е	Р
ELK2006	Engineering Ethics	3	2,0	2	0	0		
Bilimsel ara	ştırma ile ilgili kavramlar. Bilimsel ara	ıştırmanır	ı gereklili	iği. Bil	imsel a	raştırn	na ve l	bilim etiği.
Kaynak kullanımı ve atıfta bulunma örnekleri. Bilimsel aşırma, hırsızlık, dublikasyon, dilimleme, yanıltma								
kavramları v	kavramları ve örnekleri. Kopyala yapıştır bağımlılığı, internet üzerinden araştırma ve kaynak kullanımı							
konuları. Ödev ve sınavlarda öğrenci etiği ve uyulması gereken kurallar. Etik kurallarına uyulmadığında								
alınması muhtemel ceza ve yaptırımlar. Mesleki etik kuralları.								

Code	Course Name	ECTS	С	Н	Α	L	Е	Р	
ELK2000	Work safety	3	2,0	2	0	0			
Definition of the work safety, Risks and dangers, Legal and administrative responsibilities, Personal									

protection equipment, Electrical safety hazards, Electrical safety risks, Electricity Network Regulations, Fire and its Types and Causes, Methods Used in fire extinguishing, Fire Prevention, Extinguishing material, First Aid and purpose, Electrical Burns, First Aid in electrical accident.

THIRD YEAR FALL SEMESTER

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
ELK3009	Electronics - II	6	4,0	3	0	2	0	ELK2012
Small signal amplifiers, CE, CC, CB transistor amplifiers, hybrid model of the transistor, CS, CD, CG FET								
amplifiers, Cascade amplifiers, Negative feedback, Negative feedback-circuits analysis, Response of the high								
frequency amplifiers, Bode diagrams, Operational amplifiers.								

Code	Course Name	ECTS	С	Н	Α	L	Ε	Р
EEE3003	System Dynamics and Control	5	3,0	3	0	0	0	
Physical systems and the concept of control systems. Mathematical background, mathematical modelling of								
physical systems. Test signals and transient responses of first and the second order systems. Transfer								

physical systems. Test signals and transient responses of first and the second order systems. Transfer functions, block diagrams, signal flow graphs, state variables and state-space modelling. Simulation diagrams and computer simulation of the systems. PID controllers. Simulation of PID controllers. Controllability and observability. Stability of linear time invariant systems and Routh-Hurwitz Criterion.

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
ELK3001	Electromagnetic Waves	5	3,0	3	0	0	0	
Time-varying fields. Faraday's law of electromagnetic induction, transformers, Maxwell's equations, wave								

Time-varying fields, Faraday's law of electromagnetic induction, transformers, Maxwell's equations, wave equation and its solution, uniform plane waves and propagation of energy, radiation, guided waves.

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
ELK3015	Signals and Systems	5	3,0	3	0	0	0	

Introduction. Classification of signals. Time domain analysis of Linear Time Invariant (LTI) continuous systems. Frequency domain analysis of Linear Time Invariant (LTI) continuous systems. s-domain analysis of Linear Time Invariant (LTI) Continuous Systems, Discrete Systems, Frequency domain analysis of Linear Time Invariant (LTI) Discrete Systems, z- domain analysis of Linear Time Invariant (LTI) Continuous Systems, Time domain analysis of Linear Time Invariant (LTI) Continuous Systems, Time domain analysis of Linear Time Invariant (LTI) Continuous Systems, Time domain analysis of Linear Time Invariant (LTI) Continuous Systems, Discrete Systems, Continuous and discrete systems with random inputs.

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
EEE3001	Power Systems	5	3,0	3	0	0	0	

Introduction. Power Stations. Generators, Power Transmissions, Power Distributions, Utilization 3-Phase Power Systems, Star Connected Generators, Delta Connected Generators, 3-Wire Systems, 4-Wire Systems, Star Connected Loads, Delta Connected Loads, Balanced Loads, Unbalanced Loads, Power Measurement, Two Wattmeter Method Transmission Lines, Short Lines, Medium Lines, Long Lines, Power Calculations, Phasor Diagrams Application Examples.

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
ELK3003	Computer Communication	4	3,0	3	0	0		

Network architecture. measuring network performance. Classes of links. Transmitting digital information through link. Framing. Error detection. Reliable transmission. Ethernet and multiple access networks. IEEE 802.11. Bluetooth. Switching, datagrams and virtual circuit switching. Internetworking, Internet protocol. Routing.

Code	Course Name	ECTS	С	Н	Α	L	Ε	Р
ELK3011	Circuit Synthesis	4	3,0	3	0	0		
Network synthesis problem Synthesis of 1 port passive networks. Positive real functions, Synthesis of I C								

Network synthesis problem. Synthesis of 1-port passive networks. Positive real functions. Synthesis of LC, RC, RL and RLC networks. Cauer and Foster circuits, Synthesis of passive 2-port networks. Positive real matrices. Synthesis procedures converted to synthesis of 1-port network. Zero shifting technique and its application to RC circuits. Active Circuit Synthesis, Butterworth and Chebyshev approximations.

Code	Course Name	ECTS	C	Н	А	L	Е	Р
EEE3007	Numerical Analysis	4	3,0	3	0	0		
Introduction, Basic concepts and definitions, Errors in Numerical Analysis, Matrixes, Solutions of the								
Equations in One Variable and the Equation Systems, Taylor Series and Finite Differences, Interpolations,								
Extrapolations, Numerical Differentiation, Numerical Integration, Numerical Solutions of the Differential								
Equations, Least Square Method and Curve Fitting.								

THIRD YEAR SPRING SEMESTER

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
ELK3020	Entrepreneurship and Project Management	4	2,0	2	0	0	0	

Methods for developing new ideas and new project topics and getting to know the project supporting offices such as TUBITAK and KOSGEB. Preparing a project application file to be submitted to TUBITAK, KOSGEB and other project supporting offices. Basic project management steps. Starting and managing a project. Project life cycle. Organizational structures, project concept, calendar, budget, and quality management, human resources, communications, risk analysis, material purchasing, Accepted common effects on the other. Applying the project management, tracking and control, finalizing a project, Using Microsoft Project in project management.

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
ELK3000	Electric Machinery - I	6	4,0	3	0	2	0	
Introduction	Introduction, Basic concepts and definitions, Magnetic circuits and materials, Basics of electromechanical							
energy conversion, Types, structures, working principles, equivalent circuits, characteristics, starting and								

control methods of electrical machines (DC machines, Induction machines, Synchronous machines).

Code	Course Name	ECTS	С	Н	Α	L	Е	Р		
EEE3006 Microprocessors 5 3,5 3 0 1 0										
assembler, co	Fixed and floating-point arithmetic, microprocessor/microcontroller, CPU, ALU, registers, memory map, assembler, compiler, linker, introduction to PIC16Fxx, 68HC05, 8031 and MSP430Fxx, assemble instructions, program flow and interrupt routines of MSP430Fxx, UART, SCI, SPI, DMA, TIMER and their applications.									

Code	Course Name	ECTS	С	Н	Α	L	E	Р	
ELK3010	Communication Techniques	5	3,0	2	0	2	0		
	. Analog signal transmission and reception. A	-		· ·					
-	carrier amplitude modulation, single side band amplitude modulation, quadrature amplitude modulation,								
vestigial side band modulation. Frequency Division Multiplexing. Frequency modulation. Phase modulation.								ation.	
Radio and television broadcasting. Random processes. Effect of noise on analog communication systems.								tems.	
Pulse amplitude modulation, pulse width modulation, pulse position modulation, pulse code modulation,								ation,	
differential p	pulse code modulation, delta modulation. Tir	ne divisi	on multip	olexing.	Inform	nation	theory	and and	
source codin	g. Digital modulation: on-off keying, binary	phase shi	ft keying	, differe	ential p	hase s	hift ke	ying,	
frequency sh	ift keying, quadrature phase shift keying, M ar	ray phase	shift key	ing, ort	hogona	l quadı	ature p	ohase	
shift keying	, minimum shift keying, Gaussian minimu	ım shift	keying,	orthog	onal fr	equen	cy div	vision	
multiplexing	. Channel capacity and coding. Channel coding	g. Introdu	ction to v	vireless	comm	unicati	ons. S	pread	
spectrum co	ommunication systems. Digital cellular con	mmunica	tion syste	ems. F	Recent	develo	opment	ts in	
communicati	ons.		-				-		

Code	Course Name	ECTS	С	Н	А	L	Е	Р
EEE3002	Power Electronic Circuits	5	4,0	3	0	2		
Thyristors, 7	of power electronics, history of power electronics, Half and full wave diode rectifier and applications, Three phase controlled rectifier	s and ap	plications	, Half	and ful	l wave	e contr	olled

Code	Course Name	ECTS	С	Н	Α	L	E	Р	
EEE3010	Automatic Control Systems	5	4,0	3	0	2			
Concepts of	modelling, and analysis of systems in time	and frequ	ency don	nains, f	eedbacl	c and t	feed fo	rward	
controllers, stability criteria, design of controllers. Design in time and frequency domains. Root locus analysis									
		D (1 II	•	1 • 1 •	.т. •	. 1 * 1	• . • .		

and design, Stability of control systems. The concept of Routh-Hurwitz stability, Nyquist stability criterion, and Bode plots. PID controllers: analysis and design. Optimal control systems, intelligent control, introduction to digital control systems. Computer based simulations and applications related to all topics.

Code	Course Name	ECTS	С	Н	Α	L	E	Р
EEE3008	Digital Signal Processing	5	4,0	3	0	2		

Signals in discrete time, Sampling, Signal reconstruction, Systems in discrete time, The convolution sum, Difference equation, The Discrete Time Fourier Transform, Discrete Time Fourier Series, Fast Fourier Transform, System transfer function in frequency domain, The Z-transform, System transfer function in z domain.

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
ELK3002	Power Distribution Systems	4	4,0	3	0	2		
ELK3002Power Distribution Systems44,0302Basic information about distribution systems. Load characteristics, radial and ring networks. Distribution system components. Power line and cable selection in distribution systems. Loss reduction and power factor improvement. Power factor correction. Voltage drop. Voltage drop calculations. Distribution transformers. Transformer design.								factor

Code	Course Name	ECTS	С	Н	Α	L	E	Р
ELK3018	Programmable Logic Controllers	4	4,0	3	0	2		
ELK3018Programmable Logic Controllers44,0302Basic structure and hardware design of PLCs. Input output ports, register, memory, storing and recalling data. PLC programming, ladder diagrams and meaning of ladder diagram components. Applications of PLCs in industry and in process control. Knowing and using Mitsubishi PLCs. Using PLC in motion control system as well as manufacturing processes.								

Code	Course Name	ECTS	С	Н	Α	L	Е	Р		
ELK3012										
	Introduction. Transmission lines. Line equations and solutions, lossy lines, lossless lines, reflection and standing wave ratio, power transmission. Smith chart and applications. Impedance matching. Microstrip lines.									
S-parameters. Waveguides. Passive microwave devices.										

FOURTH YEAR FALL SEMESTER

Code	Course Name	ECTS	С	Н	А	L	Е	Р	
ELK4031	Professional Experience I30,0000								
The practical placement gives the student the opportunity to transform the theoretical knowledge obtained during the educational programme into the work environment and hence includes all kinds of work-related									
activities. Students are required to spend 30 days in any field related to the area of interest where they can practise their profession. The work carried out is compiled in a detailed manner on daily basis in the form of a									

report, which is then approved by the chief staff in the place of work and then submitted to the academic staff

responsible f	responsible for the evaluation and grading of the internship reports.							
						_		_
Code	Course Name	ECTS	С	Н	Α	L	Е	Р
ELK4001	Engineering Design	5	3,0	2	2	0	0	

Different design projects in all areas of electrical and electronics engineering with the help of project supervisor.

Code	Course Name	ECTS	С	Н	А	L	Е	Р
EEE4013	High Voltage Techniques	4	3,0	3	0	0	0	
International International control to the later of the state of the s								

Introduction: Historical evolution of high voltage technology. Elements of high voltage system. Negative side of Alternating and Direct current power transmission. Determination of electric fields: Fundamentals, analytical field calculation. Calculation from Maxwell's equation charge simulation method. Direct integration of Laplace's equation. Conform transformation. Basic electrode systems. Breakdown of gases: Charge carriers in gases. Properties of different charge carriers. Non-self-sustaining discharge. Collision ionization by electrons. Self- sustaining discharge. Townsend mechanism in a strongly in homogeneous field corona effect. Breakdown phenomena in liquids: Mineral and Synthetic oils. Oil-impregnated paper. Breakdown of solid insulating materials: Intrinsic breakdown. Thermal breakdown natural and synthetic insulators material and their properties used in internal insulation of the insulators. Types of power cables. Conductors, Current switches. Circuit breaks.

Code	Course Name	ECTS	С	Н	Α	L	Е	Р		
EEE4005	Renewable Energy Systems	5	3	2	0	2				
Electric power generation from conventional power stations (hydro, thermal, nuclear), Basic operation										
principles of hydraulic, thermal and nuclear power stations, World energy outlook, Renewable energy										
systems, Ele	ctricity from wind and Solar PV, Using ind	uction ma	achine as	an asyn	chrono	us gen	erator	in wind		
energy conversion (WEC), Modelling and simulation of WEC systems, Modelling and simulation of PV										
systems. Uti	systems. Utilization of wind and PV energy systems. Power system compensation, bus bar voltage control,									

Power quality and power filtering, sizing and optimal location of capacitors in power compensation.

Code	Course Name	ECTS	С	Н	Α	L	Е	Р	
EEE4009	Electrical Machines - II	5	3	2	0	2			
Introduction; Basic concepts and definitions, Effects of saturation, Harmonic, Losses and Residual flux on dynamic behaviour of the Electrical Machines, Single and three phase transformers, Dynamic behaviour of									
the Electric MATLAB/S	cal Machines, Park transformation, imulink.	Simulatio	on of	the E	lectrica	l Ma	chines	with	

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
EEE4007	Medical Electronics	5	3	2	0	2		
The human anatomy and physiology, Origins of biopotentials, Electrodes, Transducers, Biopotential								
amplifiers, Cardiovascular, Nervous, muscular and nervous systems, Measurements of ECG, EEG and EMG,								
Measurements of the blood pressure and blood flow, Measurement of respiratory signal, Electrical safety.								

Code	Course Name	ECTS	С	Η	Α	L	E	Р
EEE4003	Power Electronic Applications	5	3	2	0	2		
Solid state relays, Switches and circuit protection, AC voltage regulators, Static serial and shunt								

compensators, Switch mode dc supplies, electrical motor drives, power electronics for renewable, HVDC, FACTS devices.

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
EEE4015	Process Control	5	3	2	0	2		
Introduction to Process Control Process Control Cycles Basics of Electric and Electronic Basics of Digital								

Introduction to Process Control, Process Control Cycles, Basics of Electric and Electronic, Basics of Digital Systems, Pressure Measurement, Temperature Measurement, Analytical Measurement and Control, Flow Measurement, Final Control Elements, Process Control Computers.

Code	Course Name	ECTS	С	Η	Α	L	Е	Р
EEE4001	Industrial Electronics	5	3	2	0	2		
Basic indust	trial electronics elements: Types of diod	es, UJT,	SCR, D	IAC, T	RIAC,	and t	heir c	ircuits.
Electronic o	control of machines Servomachanism an	d synchr	onization	Close	d loon	contr	ol Inc	Justion

Electronic control of machines. Servomechanism and synchronization. Closed-loop control, Induction heating and dielectric heating. Converters (DC/DC. Inverters (DC/AC). Uninterruptible Power Supplies. Switching Mode Power Supplies. PLC's, Lasers types and different applications of lasers.

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
ELK4025	Protection in Power Systems	5	3	2	0	2		
Introduction	and General Philosophies, Fundamental	Units: P	er Unit a	and Per	cent V	/alues,	Phaso	rs and
Polarity, Sy	mmetrical Components, Short Circuit	Calcula	ation, Re	elay Ir	iput S	Sources	, Pro	tection
Fundamental	Fundamentals and Basic Design Principles, System-Grounding Principles.							

Code	Course Name	ECTS	С	Н	Α	L	Е	Р	
ELK4005	Antennas And Propagation	5	3	2	0	2			
Introduction. Types of antennas. Fundamental parameters of antennas. Wire antennas. Antenna arrays.									
Radio waves and propagation. Surface waves, Space waves, Ionospheric propagation.									

Code	Course Name	ECTS	С	Н	Α	L	Ε	Р
ELK4017	Digital Communication	5	3	2	0	2		
Introduction	Introduction to Digital Communication: channel capacity; channel sampling; digital channel; AWGN,							
frequency selective and flat channels; synchronisation, equalization and OFDM; diversity techniques. Digital								
Modulation	Techniques: MPSK, MQASK, MFSK, cohe	erent and	noncoher	ent mo	dulation	ıs; per	formar	nce and
spectrum efficiency. Signal Space Methods: optimum receiver, Gram-Schmidt Procedure, MAP Detectors.								
Error Correcting Codes: linear block, cyclic, convolutional. Spread Spectrum Communication.								

Code	Course Name	ECTS	С	Н	Α	L	Е	Р	
ELK4007	Lighting Techniques	4	2	2	0	0			
Domestic Installation, Lighting Concepts, light sources and their properties. Interior lighting, road lighting.									
Lighting Ca	lculations, Interior Lighting Calculation	s, Comp	uter Prog	grams	for Lig	ghting,	Appl	ication	
Examples.									

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
ELK4033	Special Electric Machines	4	2	2	0	0		
Basic concepts and definitions, permanent magnets and applications, saturation and hysteresis, solid rotors,								

Basic concepts and definitions, permanent magnets and applications, saturation and hysteresis, solid rotors, permanent magnet DC motors, step motors, permanent magnet synchronous motors, brushless DC motors, single phase induction motors, reluctance motors, universal motors.

Code	Course Name	ECTS	С	Н	Α	L	E	Р	
ELK4023	Communication Electronics	4	2	2	0	0			
Communication systems, noise and intermodulation distortion, communication system components, small									
signal amplifiers, power amplifiers, oscillators, mixers, coupling circuits, phase locked loop PLL, frequency									
synthesizers,	synthesizers, modulators and demodulators, frequency selective circuits, automated gain control.								

Code	Course Name	ECTS	С	Н	А	L	Е	Р
ELK4009	Image processing	4	2	2	0	0		
Introduction. Digital Image Fundamentals. Image Enhancement in the Spatial Domain. Image Enhancement								
in the Frequency Domain. Image Restoration. Colour Image Processing. Image Compression. Image								
communications systems. Image processing applications using MATLAB.								

FOURTH YEAR

SPRING SEMESTER

Code	Course Name	ECTS	С	Н	Α	L	Ε	Р		
ELK4026	Professional Experience II	3	0,0	0	0	0	0			
The practica	l placement gives the student the oppo	ortunity t	o transfo	rm the	theoret	ical kr	owled	ge obtained		
during the educational programme into the work environment and hence includes all kinds of work-related										
activities. St	udents are required to spend 30 days i	n any fie	ld related	to the	area of	fintere	est whe	ere they can		
practise their	profession. The work carried out is con	npiled in	a detailed	d manne	er on da	aily bas	sis in tl	he form of a		
report which	is then approved by the chief staff in the	he place of	of work a	nd then	submit	tted to	the aca	ademic staff		
responsible f	responsible for the evaluation and grading of the internship reports.									

Code	Course Name	ECTS	С	Н	Α	L	Ε	Р		
ELK400	Graduation project	6	3,0	2	2	0	0	ELK4001		
Electric	l and Electronics work guided by an acad	emic advi	sor. Subje	ect mus	t consi	st of fi	eldwor	rk, literature		
search,	search, and lab-work, ending with a formal report. The work can be an individual study or a teamwork.									

Code	Course Name	ECTS	С	Н	Α	L	Ε	Р	
EEE4008	Power System Analysis	6	3	2	0	2			
Interconnected power systems and its structure. Power flow analysis. Gauss-Seidel and Newton-Raphson									
Methods. Balanced and unbalanced faults on power systems. Symmetrical components. Introduction to Dig									
silent Power-factory power system analysis software. Modelling power systems, performing power flow									

analysis, short-circuit analysis, transients (electromechanical and electromagnetic transients).

Code	Course Name	ECTS	С	Н	Α	L	Е	Р	
EEE4001	Drive Systems	6	3	2	0	2			
Drive systems dynamics. Fundamental theory of DC machines. Concept of speed, torque and 4 quadrant									
operation. Power transmission components in mechanical systems. Joint speed-torque characteristics of									
electric motors and mechanical loads. Power equations in mechanical loads. Stability in drive systems. Types									
of operation in electric drive systems. Basic and modern control strategies for electrical drive systems.									

Code	Course Name	ECTS	С	Н	Α	L	Ε	Р
EEE4002	Medical Imaging Techniques	6	3	2	0	2		
Medical phy	sics and imaging principles: intensity,	resolutio	on, contra	st. X-ra	ay phys	ics: pl	noton i	interactions,
attenuation. X-ray production, detection. Computed tomography. Mammography. Fluoroscopy. Nuclear								
medicine ph	ysics: radioactivity. Nuclear medicine	imaging	. SPECT	, PET.	Radiat	ion ex	posure	principles:
safety, risk,	radiation therapy, radiation protectio	n. Ultras	ound phy	ysics: v	vaves,	reflect	ion, tr	ansmission,
attenuation.	Magnetic resonance physics: magnetic	moment	, magneti	zation,	relaxat	ion. M	agneti	c resonance
imaging (MF	RI).							

Code	Course Name	ECTS	С	Η	Α	L	Ε	Р
EEE4006	Electronic Device Techniques	6	3	2	0	2		

Statistical Analysis: Probability of errors. Correlation of data. Performance characteristics of an instrument system: Transfer functions, zero-order systems, 1st and 2nd order systems and their ramp, impulse and step responses. Frequency response. Dead time elements. Noise: Sources and types of noise, descriptions, equivalent circuits, measurement of noise. Methods of noise reduction. Interference, description and types of interference. Transducers: Types and specifications of transducers. Choosing a transducer. A/D Conversion: General principles, specifications and types. Advantages and disadvantages comparisons. D/A Conversion: Implementing D/A conversion, multiplexing (A/D and D/A). Digital Multi-meter Circuits, frequency and time interval measurements.

Page	22
1 450	

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
ELK4024	Design of Power Systems	6	2	2	0	0		
Basic Concepts of Electricity Project, Basic Elements of Distribution Network, Definitions of Power, Voltage								
Drop Calculation, Current Density, Distribution Networks, Distribution: Load Density, Short-Circuit Strength								
of Cables, Determination of Cable Fault Location.								

Code	Course Name	ECTS	С	Η	Α	L	Е	Р
ELK4022	Electromagnetic Compatibility	6	2	2	0	0		
General EMC and EMI concepts. Sources of electromagnetic interference. Effects of electromagnetic								
interference on devices and systems. Interference control techniques. Shielding and grounding. General EMC								
design principles. EMC standards. EMC measurements and testing.								

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
ELK4020	Fiberoptic communication	6	2	2	0	0		

Refraction, refraction index and Snell's law, Critical angle. The choice of frequency. Propagation of light along the fiber. The layers of optical fiber. Cone of acceptance, numerical aperture. Decibels. Loses in optic fibers; absorption, Rayleigh scatter, Fresnel reflection and bending loses. Dispersion and methods to prevent it. Modes. Graded and step index fibers. Single mode fiber. Chromatic dispersion. Light sources and detectors. Lasers. Led, PIN diodes, avalanche diodes. Real cables. Strength members, loose, tight-buffer, breakout, hybrid cables. Fire, UV, moisture, hydrocarbon and radiation precautions. The manufacture of optic fiber. Advantages of optic fibers. Fusion splicing. Mechanical splicing. Connectors. Couplers. Testing a system; visible light continuity test, light source and power meter. Calibration. Testing a system, the optical time domain reflectometer (OTDR). System design, limitations of received power, transmitted power. System design, the usable bandwidth of optic fiber. Multiplexers and filters. Gratings, Bragg gratings, Fiber gratings. Optical amplifiers. Erbium-Doped Fiber Amplifiers. Optical amplifiers. Erbium-Doped Fiber Amplifiers.

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
ELK4014	Communication Systems	6	2	2	0	0		
Audio, video	o, data communications; wireline, wirel	ess, ultra	asonic an	d optic	cal con	nmunic	cation	systems:
modem, radar sonar, RFID applications: 3G/4G communication technologies: IP networking and application								

Code	Course Name	ECTS	С	Н	А	L	Е	Р
ELK4002	Electric Vehicles	6	2	2	0	0		
Historical adventure of electric vehicles, Design criteria of propulsion systems, Electric motors used in								
propulsion systems, power electronics in electric vehicles, energy storage systems and energy management								
systems, charging stations, travel safety systems, international standards.								

Code	Course Name	ECTS	С	Н	А	L	Е	Р
ELK4030	Digital Control Systems	6	2	2	0	0		
Introduction to Digital Control, Discrete-Time Systems, Modelling of Digital Control Systems, Stability of								
Digital Con	trol Systems, Analog Control System I	Design, I	Digital Co	ontrol 3	System	Desig	gn, Sta	te-Space
Representati	on, Properties of State-Space Models, St	ate Feedl	back Con	trol, O	ptimal	Contro	ol, Ele	ments of
Nonlinear D	igital Control Systems, Practical Issues.				-			

Code	Course Name	ECTS	С	Н	А	L	Е	Р
ELK4028	Mobile Communication	6	2	2	0	0		
Mobile com	munication, fading, Rayleigh and Rician	channels.	multipat	h prop	agation	, traffi	c anal	vsis, cell

Mobile communication, fading, Rayleigh and Rician channels, multipath propagation, traffic analysis, cell planning, FDMA, TDMA, CDMA, modulation and coding in mobile communication, satellite-mobile communication systems, diversity, mobile communication architecture, types of antenna. GSM.

Code	Course Name	ECTS	С	Н	Α	L	Е	Р	
ELK4012	Microwave Systems	6	2	2	0	0			
Microwave a	radio systems. Satellite communications	systems.	Radar	systems.	Electro	onic w	arfare	systems.	
Microwave h	Microwave heating and applications.								

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
ELK4004	Intelligent Control Systems	6	2	2	0	0		
Fuzzy set theory, fuzzy logic, properties of fuzzy sets and fuzzy logic. Fuzzy operators. Fuzzy relation,								
extension principles. Fuzzy approximate reasoning. Fuzzy rules, fuzzification and defuzzification. Fuzzy								
logic controllers. Other applications of fuzzy logic. Basic neural networks. The neuron. Supervised and								
unsupervised	l learning. Bac propagation algorithm.						-	

Code	Course Name	ECTS	С	Н	Α	L	Е	Р
HUK4028	Business law	3	2,0	2	0	0		

Introduction to business law. Basic business law terms. Worker, employer, work place, employer's representative, subcontractor, business contract, contents and termination of business contract. Obligations of employer, obligations of employee, condition of work, working hours, annual holidays with pay, overwork, health and safety at work, dismissal and it's kinds, redundancy payment, collective business contract, benefits of collective business contract, strike and lockout, concept of trade union, membership to trade union, the legal organs of trade union, union activities, benefits of collective business contract.

Code	Course Name	ECTS	С	Н	А	L	Е	Р
ISL4012	Management and organization	3	2,0	2	0	0		

Management, administration and decision making, administration and planning, management by objectives, classical organization theory, neo-classical organization theory, systems approach, contingency approach, total quality management, customer satisfaction, quality control circles, quality assurance system, standardization.

