SÜRTÜNME VE AŞINMA DENEYİ

1. Giriş

Sürtünme tekniğe, birbirile temasta olan ve birbirine göre izafi hareket yapan ya da yapma eğiliminde olan iki cismin hareketi karşı gösterdikleri direnç olarak tanımlanır. İki cisim arasındaki izafi hareketi meydana getirme isteyen kuvvete karşı, cisimlerin temas yüzeylerinde hareketi engelleyen ve sürtünme kuvveti olarak tanımlanan bir karşı kuvvet oluşur. Birbirlerine temas eden yüzeyler arasında izafi hareket yoksa statik sürtünmeden söz edilir. İzafi hareket iki cisim yüzeyleri arasında mevcutsa bu durumdaki sürtünmeye dinamik veya kinetik sürtünme denir. Sürtünme kuvveti sabit değildir ve sürtünme katsayısına bağlıdır ve bu katsayının değişimiyle beraber değişir. İzafi hareket yapan cisimlerin sözkonusu yüzeyleri arasına yağlayıcı bir madde konulup konulmaması açısından sürtünme, kuru sürtünme, sıvı sürtünme ve bu iki sürtünme türü arasında kalan sırrı sürtünme olmak üzere üç durumda incelenir.

2. Sürtünme

2.1. Sürtünme Katsayısı

İki malzeme birbirine temas edecek şekilde yerleşirirse, malzemelerin birbiri üzerinde kaymasını sağlamak için uygulanacak kuvvete dik yönde olağan şekilde, bir sürünme kuvveti (direnç) oluşur. Kaymayı başlatan kuvvet \(F_s \) ile temas yüzeyine etki eden kuvvet \(F_n \) arasında,
\[
F_s = \mu_s F_n
\]
bağntısı mevcuttur. Burada \(\mu_s \), statik sürünme katsayısıdır. Şekil 1(a)'daki malzemelerin herhangi birine tegetsel bir kuvvet uygulanırsa, iki durum ortaya çıkabilir. Birinci durumda, tegetsel kuvvete rağmen cisimler birbiri üzerinde kayamaz, yani hareket edemezler. Bu durumda hareket olanağı olmadığından yüzeyler arasında "statik sürünme" denilen bir direnç oluşur ve Newton kanununa göre \(F_s \) sürünme kuvveti tegetsel sürünme kuvvetine eşit ve ters yöndedir. Böylece,
\[
F_s = F_t
\]
yazılabilir. Kavram ve fren gibi sürtünme ile çalışan sistemlerde gerçekten bu sürtünme hali mevcuttur. Diğer durumda ise, \(F_t \) tegetsel kuvvetin etkisi altında yüzeyler birbiri üzerinde
kayalar. Şekil 1 (b)’ de görüldüğü gibi, kinetik veya dinamik sürtünme denilen bu halde, \(F_s \) sürtünme kuvveti \(F_t \) tegetsel kuvvetinden daha küçüktür ve harekete ters yöndedir. Kaymanın başlamasıyla birlikte sürtünme kuvvetinde bir azalma görülür ve bu durumda,
\[
F_s = \mu_k F_n
\]
bağntısı yazılabilir. Burada \(\mu_k (< \mu_s) \) kinetik sürtünme katsayısıdır. (Şekil 1).

\[\text{Statik: } \mu_s \]
\[\text{Kinetik: } \mu_k \]

Şekil 1. Statik ve kinetik sürtünme katsayıları

Kinetik sürtünme katsayısı, statik sürtünme katsayısından daha küçük değerdedir. Bunun sebebi, dinamik haldeki yüzeylerde bulunan küçük çinkıtlar statik haldeki gibi yapısmak için gerekli zaman bulamazlar. Bu nedenle geçilmesi gereken temas alanı azalır. I numaralı eşitlik göz önüne alınacak olursa, \(\mu_k \) değeri \(\mu_s \)’ ye göre daha küçük değer alacaktır. Kayma durur durmaz, sürtünme temas yüzeylerinin çok az büyümesine müsaade eder ve burada, yay冤ma mekanizması bağların kuvvetlenmesini sağlar. Böylece sürtünme katsayısı yeniden \(\mu_s \) değerine ulaşır. Sürtünme katsayısının ölçülmesi için kullanılacak yöntemler ASTM G 115’ de açıklanmıştır.

2.2. Yüzyek Pürüzlülüğü ve Gerçek Temas Alanı
Tornalanmış veya eş çalışmış malzemelerin yüzeyleri mikroskop altında incelenecek olursa, Şekil 2’ de şematik olarak görüldüğü gibi, yüzeyde çok sayıda girinti ve çinkıtların yani pürüzlülüklerin olduğu görülür. Yüzyeler parlatıldığında veya talaşlı işleme tabi tutulduğunda pürüzlülüklerde azalma olur. Fakat yine de yüzeyde pürüzlülükler bulunur.
Şekil 2. İşlenmiş bir metal yüzeyin mikroskop altında şematik görünüşü.

Ne kadar hassas işlenmiş veya parlatılmış olursa olsunlar, iki yüzey birbirleriyle temas ettiğiinde, gerçek temas bir takım pürüzlülüklerin birbirine temas ettiği noktalarda oluşur. Bu durumda yüzeye etki eden yük, sadece pürüzlülüklerin birbirlerine değtiği noktalardan desteklenir ve yüzey alanının küçük bir kısmı yükü taşır.

3. Aşınma ve Aşınma Türleri
Aşınma kimyasal ve/veya mekanik etkilerle istenmeyen malzeme kayıbı olarak tanımlanır. Bir aşınma sisteminde;
 a) Ana malzeme (aşınan)
 b) Karşı malzeme (aşındıran)
 c) Ara malzeme
 d) Yük
 e) Hareket,
aşınmanın temel unsurlarıdır. Bu unsurların oluşturduğu sistem tekniğe “Tribolojik Sistem” olarak adlandırılır.

Aşınma türlerinin genel bir sınıflandırılması abrazif aşınma, adezif aşınma, yorulma aşınması, erozyon aşınması ve korozyon aşınması olabilir, bunların yalnız başına görülmemesi nadirdir, uyguladaki çoğu örnekler bunların iki veya daha fazlasının birlikte etkili olduğu görülür.

Abrazif aşınma iki yüzeyden birinin çok sert ve yüzeyin pürüzlü olduğu şartlarda oluşan bir aşınmadır. Benzer davranış çok sert aşınma ürünlerinin ve yabancı parçacıkların daha yumuşak yüzeyi kazması ve çizmesiyle de görülmektedir. Mohs sertlik skalasına göre fark edilebilir bir abrazif etki için malzemelerden birinin diğerinden %10 daha fazla sert olmasa gerekir.

Ortaya çıkan malzeme aşınma ürünü oluşturularak düşebilir veya yüzeyler arasında kalırsa abrazif aşınmaya sebep olabilir.

Malzemelerinde oluşan bir diğer aşınma türü yorulma aşınmasıdır. Yorulma aşınması ışıl ve mekanik olmak üzere iki şekilde oluşur. İstil yorulmaya tekrarlı ısıtma ve soğutma neticesinde malzemede değişken gerilmelerin ve aşırı ışıl gradyanın oluşması sebep olur. Mekanik yorulmaya ise malzemeye uygulanan tekrarlı gerilmeler neden olur.

Erozyon aşınması katı parçacıklar içeren bir akışkanla bağlı hareket ve temas halinde olan katı bir yüzeyden malzeme kaybı erozyon aşınmasıdır.

Korozyon aşınması kimyasal ve elektrokimyasal reaksiyonun çevresel olarak fazla olması durumunda meydana gelen bir aşınma şeklidir. Korozif aşınma genellikle aşınmanın hafif bir şekilde fakat yüksek sevакlklarda veya nemli ortam içinde aşırı bir hal alabilir. Oksitleyici aşınma bir korozif aşınma şeklinde oksijenle kimyasal reaksiyon veya baskın bir oksitleyici ortamın olması durumunda görülür.

4. Aşınma Deneyleri ve Ölçüm Yöntemleri

ASLE (American Society of Lubrication Engineers) aşınmanın belirlenmesinde yüz kadar deney sistemi belirtilmiştir. Bunlardan en çok kullanılanları ise aşınma miktarı, kahınlık farkı ve iz değişimin metodlardır.

4.1. Ağırlık farkı metodu

Ekonomik olması ve ölçülen büyüklüğün alet duyarlılık kapasitesi dahilinde bulunması sebebiyle en çok kullanılan yöntemdir. Deney numunelerinin her ölçümü için numunenin yerinden çıkartılıp ölçüm yapılarak, yani numune yerindeyken üzerinden ölçü alınamamış bu yöntem rezervete edilmişdir. Aşınma kaybının ölçüldüğü 10⁻³ veya 10⁻⁴ gr. hassasiyetinde oldukça duyarlı bir terazide yapılır. Aşınma miktarı gram veya miligram cinsinden ifade edilirse, metre veya kilometre olarak tespit edilen sütünme yoluna göre, birim sütünme yoluna karşılık gelen ağırlık kaybı miktarı, (gr/km), (mg/m) ile ifade edilebilir. Ağırlık kaybı, birim alan için hesap edilecekse, (gr/cm²) gibi bir birim kullanılabilir. Ağırlık kaybı, hacimsel aşınma miktarı olarak belirlmek istendiğinde, yine ağırlık kaybından hareketle kullanılan malzemenin yoğunluğu ve deney numunesi üzerine etki eden yükleme ağırlığını hesaba katılmak suretiyle birim yol ve birim yükleme ağırlığına karşılık gelen hacim kaybından gidilerek de bulunabilir.

Bu tanımlamalardan hareketle malzemenin özgüll aşınması aşağıda verilen bağıntıyla hesaplanabilir.
\[
\dot{W}_s = \frac{\Delta V}{F_n L} = \frac{\Delta m}{\rho F_n L}
\]

Burada; \(\dot{W}_s\): Özgül asınma miktarı, \(\Delta V\): Hacimsel malzeme kaybı, \(\Delta m\): Ağırlık kaybı, \(\rho\): Yoğunluk, \(F_n\): Uygulanan normal kuvvet, \(L\): Kat edilen toplam yol uzunluğu' dur.

4.2. Kalınlık farkı metodu

Aşınma esnasında oluşacak boyut değişikliğinin ölçülmesi, başlangıç değeri ile karşılaştırılması suretiyle elde edilir. Kalınlık farkı olarak tespit edilen bu değerden gidererek, hacimsel kayıp değeri ve birim hacimdeki aşınma miktarı hesaplanır. Kalınlık, hassas ölçme aletleri yardımıyla \(\pm 1\ \mu m\) duyarlılıkta ölçülmelidir.

4.3. İz değişim metodu

5. Deneyin Uygulanması

1. Deneye başlamadan önce deney numunesinin ağırlığı hassas terazi ile ölçülmür.
2. Deney öncesinde deney numunesinin yüzeyinden yüzey pürüzlülük ölçümü alınır.
3. Deney numunesi Friction Coefficient Test Rig düzeneğine yerleştirilir.
5. Deney düzeneği çalıştırılarak test işlemi gerçekleştirilir.
6. Deney sonunda numunede meydana gelen ağırlık kaybı ölçülerek özgül asınma miktarı tespit edilir.
7. Deney numunesinin yüzey pürüzlülük değeri tekrar ölçülerek pürüzlülük değerlerindeki değişim tespit edilir.

6. İsteneenler

7. Kaynaklar

