Doktora Tezi Görüntüleme

Öğrenci: Ahmet BİRİNCİ
Danışman: Prof. Dr. Ragıp ERDÖL
Anabilim Dalı: İnşaat Mühendisliği
Enstitü: Fen Bilimleri Enstitüsü
Üniversite: Karadeniz Teknik Üniversitesi
Tez Adı: ALT TABAKASINDA DÜŞEY BİR ÇATLAĞI BULUNAN VE RİJİT BİR BLOK ARACILIĞI İLE YÜKLENEN BİLEŞİK TABAKA PROBLEMİ
Tezin Türü: Doktora
Kabul Tarihi: 23/12/1998
Sayfa Sayısı: 166
Tez No: dT227
Özet:

      Bu çalışmada, elastik sabitleri ve yükseklikleri farklı iki tabakadan oluşan ve alt tabakasında simetri ekseni üzerinde düşey bir çatlağı bulunan bileşik tabakada temas ve çatlak problemleri Elastisite teorisine göre incelenmektedir. Bileşik tabaka basit mesnetler üzerine oturmakta olup, üstten rijit bir blok aracılığı ile yüklenmekte ve bütün yüzeylerin sürtünmesiz olduğu kabul edilmektedir. Sözü edilen bu çalışma dört ana bölümden oluşmaktadır.

      Birinci bölümde, konunun öneminden, temas ve çatlak problemleri ile ilgili daha önce yapılmış çalışmalardan ve çalışmanın kapsamından bahsedilmektedir. Bu bölümde ayrıca, Elastisite teorisinin temel denklemleri ve integral dönüşüm teknikleri kullanılarak çatlaksız ve çatlaklı tabaka halinde gerilme ve yerdeğiştirmelerin genel ifadeleri verilmektedir.

      İkinci bölümde, problem tanıtılmakta ve bileşik tabakada çatlak bulunmaması ve bulunması halleri ayrı ayrı incelenmektedir. İlk olarak bileşik tabakada çatlak bulunmaması hali ele alınmakta ve bu duruma ait sınır şartları sağlatılarak problem blok altındaki temas gerilmesinin bilinmeyen olduğu bir singüler integral denkleme indirgenmektedir. İntegral denklem çeşitli blok profilleri için sayısal olarak çözülmekte ve blok altındaki temas gerilmeleri hesaplanmaktadır. Blok altındaki temas gerilmelerine bağlı olarak da simetri ekseni üzerindeki normal gerilmeler, iki elastik tabaka arasındaki ilk ayrılma yükü ve ilk ayrılma uzaklıkları belirlenmektedir. İkinci olarak ise, alt tabakada düşey bir çatlak olması hali ele alınmakta ve bu halde çatlak yüzeyine çatlaksız çözümden elde edilen normal gerilmeler zıt yönde, aynı şiddet ve aynı doğrultuda yüklenerek iç ve kenar çatlak durumları ayrı ayrı incelenmektedir. Dış yüklemelerin olmadığı bu duruma ait sınır şartları kullanılarak problem yine bir singüler integral denkleme indirgenmekte ve bu denklemin sayısal olarak çözümü sonucunda iç ve kenar çatlak hallerinde çatlak uçlarındaki gerilme şiddet faktörleri ve çatlak yüzey yerdeğiştirmeleri hesaplanmaktadır.

      Üçüncü bölümde, ikinci bölümde verilen problemin çeşitli boyutsuz büyüklükler için sayısal uygulaması yapılmaktadır. Tabaka kalınlıkları, blok yarıçapı, mesnet genişliği, blok ile bileşik tabaka arasındaki temas alanı (blok genişliği) ve malzeme sabitlerinin oranlarına değişik sayısal değerler verilerek sözü edilen bu büyüklüklerin temas gerilmeleri, normal gerilmeler, tabakalar arasındaki ilk ayrılma yükü ve ilk ayrılma uzaklığı, çatlak uçlarındaki gerilme şiddet faktörü ve çatlak yüzey yerdeğiştirmeleri üzerindeki etkileri incelenmekte ve bunlara ait sonuçlar tartışılmaktadır. Bu bölümde ayrıca sayısal uygulamalardan elde edilen grafikler ve tablolar verilmektedir.

      Dördüncü bölümde bu çalışmadan çıkartılan sonuçlar ve öneriler verilmektedir.

      

Anahtar Kelimeler : Elastisite Teorisi, Bileşik Tabaka, Temas Mekaniği, Kırılma Mekaniği, Temas Gerilmesi, İntegral Dönüşüm Tekniği, İntegral Denklem, İlk Ayrılma Yükü, İlk Ayrılma Uzaklığı, İç Çatlak, Kenar Çatlak, Gerilme Şiddet Faktörü.